Wine and Cheese Fall 2014: Difference between revisions
m (→Peter Behroozi) |
Gailzasowski (talk | contribs) (added Nick Stone) |
||
Line 51: | Line 51: | ||
'''Title''' <br> | '''Title''' <br> | ||
Abstract | Abstract | ||
== Nick Stone == | |||
'''Stellar Tidal Disruption: the Role of General Relativity''' <br> | |||
In tidal disruption events (TDEs), stars passing too close to supermassive black holes (SMBHs) are violently torn apart. I will discuss several recent findings about the light curves of these events, including the role of orbital pericenter, ways in which the spin of the SMBH can be imprinted into TDE light curves, and possible emission of high frequency gravitational waves. I will also discuss an ongoing project focused on how highly eccentric debris streams from a TDE can circularize into a luminous accretion disk. It appears likely that the circularization process is mediated by general relativistic effects: circularization is aided by apsidal precession and hindered by nodal precession due to Lense-Thirring torques. | |||
= 20 Oct 2014 = | = 20 Oct 2014 = |
Revision as of 15:29, 29 August 2014
Back to W&C Schedule
8 Sept 2014
K.G. Lee
The First z>2 Large-Scale Structure Map with Lyman-Alpha Forest Tomography from LBGs
The hydrogen Lyman-alpha forest is a long-established probe of large-scale structure at z>2, but is typically limited to 1D investigations along individual quasar sightlines. However, by instead targeting LBGs as background sources, the transverse separation between sources is ~Mpc and it becomes possible to do a 3D 'tomographic' reconstruction of the intergalactic medium. I will describe pilot observations using this technique, which has produced the first map of 3D large-scale structure at z~2.3 within the COSMOS field. Comparisons with coeval galaxies and simulations indicate that our map is truly tracing large-scale structure. This motivates the CLAMATO survey, which will map out a volume of (100 Mpc/h)^3 at z~2.3 and allow us to search for galaxy protoclusters, study the effect of environment on galaxy evolution, and constrain cosmological parameters.
Peter Behroozi
Close Pairs: Observational Probes for how Halo Accretion Impacts Galaxy Star Formation
We present a simple observational method for selecting galaxies whose host dark matter haloes have had significantly higher-than-average accretion rates. The method relies on using close pairs of galaxies to preferentially identify major dark matter halo mergers. Applying the method to central L∗ galaxies in the Sloan Digital Sky Survey (SDSS) DR10, we find no evidence for enhanced average or median star formation accompanying as much as an 0.3 dex increase in average halo accretion rates. However, population subsamples do show enhancements. Most interestingly, star-forming L∗ galaxies show a double peak in star formation enhancements as a function of the distance to the close pair. The larger (factor of 2) enhancement occurs for close pairs within 30 kpc, and the smaller (factor of 40%) enhancement occurs for pairs separated by 100-200 kpc (i.e., just within the virial radius of the larger galaxy’s halo). We discuss implications for conditional abundance matching models; while galaxy quenchedness cannot depend only on halo mass and recent accretion, reproducing the full behaviour of star-forming galaxies requires more advanced models than currently exist.
15 Sept 2014
Dheeraj Pasham
Title
Abstract
Alex Mendez
Title
Abstract
22 Sept 2014
Yacine Ali-Haïmoud
Title
Abstract
Jim Green
Title
Abstract
29 Sept 2014
Remco van den Bosch
Title
Abstract
Omer Bromberg
Title
Abstract
6 Oct 2014
Matthias Bartelmann
Title
Abstract
Roseanne Cheng
Title
Abstract
13 Oct 2014
Jeff Cummings
Title
Abstract
Nick Stone
Stellar Tidal Disruption: the Role of General Relativity
In tidal disruption events (TDEs), stars passing too close to supermassive black holes (SMBHs) are violently torn apart. I will discuss several recent findings about the light curves of these events, including the role of orbital pericenter, ways in which the spin of the SMBH can be imprinted into TDE light curves, and possible emission of high frequency gravitational waves. I will also discuss an ongoing project focused on how highly eccentric debris streams from a TDE can circularize into a luminous accretion disk. It appears likely that the circularization process is mediated by general relativistic effects: circularization is aided by apsidal precession and hindered by nodal precession due to Lense-Thirring torques.
20 Oct 2014
27 Oct 2014
3 Nov 2014
Chun Ly
Title
Abstract
The hydrogen Lyman-alpha forest is a long-established probe of large-scale structure at z>2, but is typically limited to 1D investigations along individual quasar sightlines. However, by instead targeting LBGs as background sources, the transverse separation between sources is ~Mpc and it becomes possible to do a 3D 'tomographic' reconstruction of the intergalactic medium. I will describe pilot observations using this technique, which has produced the first map of 3D large-scale structure at z~2.3 within the COSMOS field. Comparisons with coeval galaxies and simulations indicate that our map is truly tracing large-scale structure. This motivates the CLAMATO survey, which will map out a volume of (100 Mpc/h)^3 at z~2.3 and allow us to search for galaxy protoclusters, study the effect of environment on galaxy evolution, and constrain cosmological parameters.
Abstract
Abstract
Abstract
Abstract
Abstract
Abstract
Abstract
Abstract
Abstract
In tidal disruption events (TDEs), stars passing too close to supermassive black holes (SMBHs) are violently torn apart. I will discuss several recent findings about the light curves of these events, including the role of orbital pericenter, ways in which the spin of the SMBH can be imprinted into TDE light curves, and possible emission of high frequency gravitational waves. I will also discuss an ongoing project focused on how highly eccentric debris streams from a TDE can circularize into a luminous accretion disk. It appears likely that the circularization process is mediated by general relativistic effects: circularization is aided by apsidal precession and hindered by nodal precession due to Lense-Thirring torques.
Abstract