Wine and Cheese Spring 2021
This page records the schedule, titles and abstracts of the JHU/STScI CAS Astrophysics Wine & Cheese Series in Spring 2021.
Wine and Cheese sessions with one speaker will have a 50 minute talk with 10 minutes for questions. Sessions with two speakers will have two 25 minute talks, each with 5 minutes for questions. Sessions in the Graduate Student Series will have three 15 minute talks, each with 5 minutes for questions.
Back to W&C Schedule
01 February
Vadim Burwitz (MPE)
The eROSITA X-ray Telescope Onboard the Spektr-RG Observatory: First Results
In my talk I will describe the eROSITA X-ray telescope onboard the Russian-German mission Spektr-RG that was launched in July 2019 from Baikonur. After an inflight calibration and performance verification phase the all sky survey commenced in December 2019. Since then two all sky surveys have been completed. Work is ongoing to analyse the rich yield of data. I will also present an overview of the first exiting scientific results that have been obtained over the last year (from stars, x-ray binaries to AGN, Clusters as well as diffuse X-ray emission).
08 February
(JHU)
Renata Cumbee (UMCP/GSFC)
Astrophysical Charge eXchange: From the Laboratory to the Cosmos
Comets, planets, star-forming galaxies, supernova remnants, and galaxy clusters can all produce rich X-ray emission spectra. Disentangling the individual emission lines and processes that form them teaches us about the formation of these objects. The X-ray spectrum resulting from charge exchange (CX) - which involves a collision between an ion and a neutral atom or molecule - varies strongly based on the present ions, atoms or molecules, and the velocity of the collision. With a reliable CX model, this process can be used as a diagnostic tool for understanding neutral and ion density distributions, ion temperatures, elemental abundances, and ion charge state distributions in these environments. A reliable CX model requires a set of accurate, velocity-dependent cross-sections for a wide range of collision velocities and any relevant ions and neutrals that might be observed astrophysically. Theoretical methods used for calculating these cross-sections are often only relevant for a subset of these parameters, and these calculations must be benchmarked against experiments when possible. I introduce the process for preparing and testing the reliability of a CX model and provide examples of spectra in which this process is of particular importance.